If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2-24H+200
We move all terms to the left:
-(-16H^2-24H+200)=0
We get rid of parentheses
16H^2+24H-200=0
a = 16; b = 24; c = -200;
Δ = b2-4ac
Δ = 242-4·16·(-200)
Δ = 13376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13376}=\sqrt{64*209}=\sqrt{64}*\sqrt{209}=8\sqrt{209}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{209}}{2*16}=\frac{-24-8\sqrt{209}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{209}}{2*16}=\frac{-24+8\sqrt{209}}{32} $
| 8x+5=6x-4;2 | | 10z+4=2(5z+8)- | | -6x+8=47 | | 2x-(x+9)=-13 | | x^2+3.5x-1/2-2+2/x=0 | | (5x+9)^(1/3)+4=6 | | P(c)=-12c^+120c | | 1/3c=5 | | 3(x-5)=2(-11) | | -8x+21-9=-7x-13 | | 2x+9((1/3)x+8)=27 | | (4x-1)-7x=17 | | (14-15x)+(4x+4)=180 | | 1/5x-50=2x-5 | | 2/3b-6=22 | | S=-16t^2+52t+3 | | 2x+9(1/3x+8)=27 | | 11x-21=9x-35 | | 5z-3=2(z-3 | | 6t-2/3+t/5=4+(10-t)/3) | | 9+4/7x=28/3 | | m+6/m+3=m-9/m+5 | | 2/5X+1/2=3/10x+3/5 | | 11/2g+33/4=-21/4 | | P(x)=-2x^+16-24 | | 35/4x+5*8=x | | 6t-2/3+t/5=4+((10-t)/3) | | 2x+1x+2x+1x=18 | | X+2/8-3=4x/3+4 | | 11=3a | | -17.16+3.3p=-14.7+-4.9p | | 3x^2-18x+7=2x+14 |